Софт

электронная лампа 5 букв

Рейтинг: 4.8/5.0 (1201 проголосовавших)

Категория: Windows

Описание

Электронная лампа, электровакуумный диод, 8 букв, 5 буква - Т, сканворд

Электронная лампа, электровакуумный диод, 8 букв, 5 буква «Т», сканворд

Слово из 8 букв, первая буква - «К», вторая буква - «Е», третья буква - «Н», четвертая буква - «О», пятая буква - «Т», шестая буква - «Р», седьмая буква - «О», восьмая буква - «Н», слово на букву «К», последняя «Н». Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.

К Е Н О Т Р О Н

Другие значения этого слова:
  • Сканворды
  • Кроссворды
  • Кейворды
  • Судоку
  • Поисковик сканвордиста
  • Словарь кроссвордиста
  • Смешные анекдоты
  • Решать анаграмму онлайн
  • Помощник в решении анаграмм
Случайный анекдот:

Мальчик съел килограмм селёдки, солёный огурец и запил молоком.
Смотрите в кинотеатрах - "Гарри Поттер и тайная комната".

Сканворды, кроссворды, судоку, кейворды онлайн

Электронная Лампа 5 Букв:

  • скачать
  • скачать
  • Другие статьи, обзоры программ, новости

    Электронная лампа, 6 букв (4 варианта) - сканворды и кроссворды

    Электронные лампы

    Ниже перечислены все электронные лампы из шести букв. К каждому из определений дано краткое описание.

    Вы можете прочитать эти описания, найти немного полезной информации и посмотреть на изображения.

    Если вам есть что добавить, то ниже к вашим услугам — форма комментирования, в которой вы можете высказать свое мнение или дополнить статью.

    Список электронных ламп Гексод

    Электронная шестиэлектродная лампа. Состоит из катода, анода, двух экранирующих сеток и двух управляющих. Четвертая сетка была введена для возможности осуществления двойного управления. По характеристикам гексоды практически не отличаются от пентодов. В связи с ограниченным применением схем с двойным управлением, гексоды широкого распространения не получили. В промышленности выпускались гексод АН-1, триод-гексоды 6И2П и ЕСН-80.

    Гептод

    Электронная семиэлектродная лампа. Состоит из катода, анода, двух экранирующих, двух управляющих и одной антидинатронной сеток. К гептодам относится два класса ламп: пентагрид и триод-гептод. У пентагрида смеситель и гетеродин содержатся в одной структуре электродов. Однако, при такой структуре, у него исчезла антидинатронная сетка. В связи с этим был разработан гептод, у которого в роли антидинатронной сетки выступила сетка, служившая анодом гетеродинного триода в пентагриде. В качестве анода выступила объединенная экранная сетка. В гептоде к экранным сеткам подключена катушка контура гетеродина, собранного по схеме с обратной связью, обеспечивающая его самовозбуждение. В промышленности широкое применение нашли пентагрид — 6А8, триод-гептод — 6И1П, 6И3П.

    Пентод

    Электронная пятиэлектродная лампа. Состоит из катода, анода, управляющей, защитной и динатронной сетки. Дополнительная сетка была введена для устранения динатронного эффекта. Выделяют два типа пентодов: высокочастотные пентоды и оконечные. Первые применяются для усиления напряжений высокой частоты, а оконечные — напряжений низкой частоты.

    Высокочастотные пентоды обладают самым большим коэффициентом усиления, у низкочастотных пентодов он несколько ниже. Главные преимущества пентодов: устойчивость к самовозбуждению, отсутствие на вольт-амперной характеристике ниспадающего участка, небольшие нелинейные искажения. К недостаткам пентодов относится высокий уровень внутренних шумов.

    Для пентодов существуют оптимальные параметры работы – определенные напряжения на защитной сетке и аноде. Превышение напряжений на защитной сетке нежелательно, так как ведет к падению анодного тока, и повышению уровня внутренних шумов. Пентоды нашли широкое применение в промышленности, и долгое время использовались как приемно-усилительные и генераторные лампы.

    Тетрод

    Электронная четырехэлектродная лампа. Состоит из катода, анода, управляющей и экранирующей сетки. Появление экранирующей сетки было вызвано высокой емкостью между анодом и сеткой в триодах, которая препятствовала использованию триодов на более высоких частотах. В тетроде экранирующая сетка имела положительный заряд и служила экраном, снижающим емкость анод-сетка.

    Тетрод применялся для работ на высоких частотах. Однако, в случае превышения напряжения на экранирующей сетке выше напряжения на аноде, в тетроде возникал ток вторичных электронов. Явление получило название — динатронный эффект. Преодолеть данную проблему удалось созданием лучевых тетродов, в которых электроны направляются к аноду лучами, создавая вокруг себя плотный отрицательный заряд и отталкивая вторичные электроны назад к аноду. Иным решением проблемы стало создание пентодов, в которых была включена дополнительная антидинатронная сетка. Тетрод служил как приемно-усилительная либо как генераторная лампа до широкого распространения в промышленности пентодов.

    Еще слова с таким-же количеством букв:

    Электронная лампа терминатор, электронная лампа с восемью электродами анод катод и шесть сеток, электронная лампа 5 букв название, электронная лампа и

    biceps-spb.ru

    Первая советская радиолампа. Экспозиция Музея нижегородской радиолаборатории

    В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.

    Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия .

    В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники. [источник не указан 2150 дней ]

    В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод ). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор .
    В 1921 году А. А. Чернышёвым [3] [4] предложена конструкция цилиндрического подогревного катода (катода косвенного накала).

    Миниатюрные стержневые пентоды производства СССР

    Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.

    Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.

    Конструкция

    Элементы электронной лампы (пентода):
    Нить накала, катод, три сетки, анод. Вверху — элементы крепления и кольцо с поглотителем остатков воздуха.

    Катод

    Для того, чтобы обеспечить эмиссию электронов с катода, его дополнительно подогревают [3] .

    По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

    Катод прямого накала представляет собой металлическую нить из металла с высоким удельным электрическим сопротивлением. Ток накала проходит непосредственно через катод. Лампы прямого накала потребляют меньшую мощность, быстрее разогреваются, отсутствует проблема обеспечения электрической изоляции между катодом и нитью накала (эта проблема существенна в высоковольтных кенотронах ). Однако, обычно они имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы. Лампы прямого накала часто называют «батарейными», так как они широко применялись в аппаратуре с автономным питанием; но прямонакальный катод применяется и в мощных генераторных лампах. Там он представляет собой не нить, а достаточно толстый стержень.

    Катод косвенного накала представляет собой цилиндр, внутри которого располагают подогреватель (нить накала ), электрически изолированную от катода. Подогреватель приходится раскалять гораздо сильнее, чем прямонакальный катод, поэтому он потребляет намного бо?льшую мощность, лампа выделяет много тепла, требует заметного времени для прогрева (десятки секунд, а то и минуты). Зато площадь катода можно сделать намного больше (а значит, увеличить ток, протекающий через лампу), катод изолирован от источника питания подогревателя (это снимает некоторые схемотехнические ограничения, присущие лампам прямого накала) и питать подогреватель в большинстве случаев можно переменным током (сравнительно массивный катод хорошо сглаживает колебания температуры, и фон переменного тока невелик). Подавляющее большинство ламп малой и средней мощности для стационарной аппаратуры имеют катод косвенного накала.

    Чтобы облегчить эмиссию электронов, катоды ламп обычно активируют — покрывают тончайшим слоем вещества, имеющего относительно малую работу выхода. торий. барий и их соединения [5]. Активирующий слой в процессе работы постепенно разрушается и лампа теряет эмиссию, «садится» — с поверхности катода истекает все меньше электронов, уменьшается ток лампы, то есть снижается ее усиление и выходная мощность. Срок службы «севшей» лампы можно продлить, немного увеличив напряжение накала; но тут увеличивается риск перегорания подогревателя.

    Чисто металлические катоды (например, в мощных лампах с большой плотностью тока катода) делают из вольфрама .

    Анод

    Анод электронной лампы

    Положительный электрод. Выполняется иногда в форме пластины, но чаще в форме коробочки окружающей катод и сетки и имеющей форму цилиндра или параллелепипеда. В мощных лампах анод может иметь рёбра или «крылышки» для отвода тепла. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

    Сетка

    Между катодом и анодом располагаются сетки. которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

    Сетка представляет собой решётку либо (чаще) спираль из тонкой проволоки, навитую вокруг катода на нескольких поддерживающих стойках (траверсах). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

    По назначению сетки подразделяются на следующие виды:

    • Управляющая сетка  — небольшое изменение разности потенциалов между управляющей сеткой и катодом приводит к большим изменениям анодного тока лампы, что позволяет усиливать сигнал. Располагается на минимально возможном расстоянии от катода.
    • Экранирующая сетка  — устраняет паразитную ёмкость между управляющей сеткой и анодом, что позволяет увеличить коэффициент усиления и предотвратить самовозбуждение на высоких частотах. На экранирующую сетку подаётся постоянное напряжение, равное или несколько меньшее анодного. При случайном размыкании цепи анода через экранирующую сетку может потечь ток значительной силы, что приведёт к повреждению лампы. Для предотвращения этого явления, последовательно с экранирующей сеткой включают резистор сопротивлением в несколько килоом;
    • Антидинатронная сетка  — устраняет динатронный эффект. возникающий при ускорении электронов полем экранирующей сетки. Противодинатронную сетку соединяют с катодом лампы, иногда такое соединение сделано внутри баллона лампы.

    В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода [6] [7] .

    Баллон

    Блестящее напыление (геттер ), которое можно видеть на стекле большинства электронных ламп, выполняет двойную функцию — адсорбент остаточных газов, а также индикатор вакуума (многие виды геттера белеют при попадании воздуха в лампу в случае нарушения её герметичности).

    Металлические электроды (токовводы ), проходящие через стеклянный корпус лампы, должны быть согласованы по коэффициенту теплового расширения с данной маркой стекла и хорошо смачиваться расплавленным стеклом. Их выполняют из платины (редко), платинита. молибдена и др. [8]

    Основные типы

    Малогабаритные («пальчиковые») радиолампы

    Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

    Высокочастотная и высоковольтная мощная техника
    • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны. клистроны. лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
    • Магнетрон можно встретить не только в радаре. но и в любой микроволновой печи.
    • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.
    Военная промышленность

    Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы. отличавшиеся малыми размерами и большой механической прочностью.

    Миниатюрная лампа типа «жёлудь» (пентод 6Ж1Ж, СССР, 1955 г.).

    Космическая техника

    Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском. [9]

    Повышенная температура среды и радиация

    Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

    Звукотехническая аппаратура

    Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

    Классификация по названию Маркировки, принятые в СССР/России Маркировки в других странах

    В Европе в 1930-е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки.

    Первая буква характеризует напряжение накала или его ток:

    • А — напряжение накала 4 В;
    • В — ток накала 180 мА;
    • С — ток накала 200 мА;
    • D — напряжение накала до 1,4 В;
    • E — напряжение накала 6,3 В;
    • F — напряжение накала 12,6 В;
    • G — напряжение накала 5 В;
    • H — ток накала 150 мА;
    • К — напряжение накала 2 В;
    • P — ток накала 300 мА;
    • U — ток накала 100 мА;
    • V — ток накала 50 мА;
    • X — ток накала 600 мА.

    Вторая и последующие буквы в обозначении определяют тип ламп:

    • A — диоды;
    • B — двойные диоды (с общим катодом);
    • C — триоды (кроме выходных);
    • D — выходные триоды;
    • E — тетроды (кроме выходных);
    • F — пентоды (кроме выходных);
    • L — выходные пентоды и тетроды;
    • H — гексоды или гептоды (гексодного типа);
    • K — октоды или гептоды (октодного типа);
    • M — электронно-световые индикаторы настройки;
    • P — усилительные лампы со вторичной эмиссией;
    • Y — однополупериодные кенотроны (простые);
    • Z — двухполупериодные кенотроны.

    Двузначное или трёхзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

    • 1-9 — стеклянные лампы с ламельным цоколем («красная серия»);
    • 1х — лампы с восьмиштырьковым цоколем («11-серия»);
    • 3х — лампы в стеклянном баллоне с октальным цоколем;
    • 5х — лампы с октальным цоколем;
    • 6х и 7х — стеклянные сверхминиатюрные лампы;
    • 8х и от 180 до 189 — стеклянные миниатюрные с девятиштырьковой ножкой;
    • 9х — стеклянные миниатюрные с семиштырьковой ножкой.
    Газоразрядные лампы

    В газоразрядных лампах обычно используется разряд в инертных газах при низких давлениях. Примеры газоразрядных электронных ламп:

    • Газоразрядные стабилитроны
    • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т. п.)
    • Тиратроны (трёхэлектродные лампы — газоразрядные триоды, четырёхэлектродные — газоразрядные тетроды)
    • Крайтроны
    • Счётчики Гейгера — Мюллера
    • Ксеноновые. неоновые лампы и другие газоразрядные источники света.
    См. также Примечания
    1. Вакуумная микро- и наноэлектроника
    2. Вакуумная интегральная микросхема
    3. ^ 12Батушев В. А. Электронные приборы: Учебник для вузов. — 2-е, перераб. и доп. — М. Высшая школа, 1980. — С. 302-303. — 383 с.
    4. А. А. Чернышёв Биография на сайте Великие ученые XX века
    5. ^
  • ^ С. Матлин. Портативный передатчик.//«Радио» № 1, 1967, с. 18-20
  • ^ Г. Джунковский, Я. Лаповок. Передатчик третьей категории.//«Радио» № 10, 1967, с. 17-20
  • ^Коленко Е. А. Технология лабораторного эксперимента: Справочник. — СПб. Политехника, 1994. — С. 376. — 751 с. — ISBN 5-7325-0025-1 .
  • Е-2 УХОДИТ К ЛУНЕ
  • Ссылки
    • Справочник по отечественным и зарубежным радиолампам. Более 14000 радиоламп
    • Справочники по радиолампам и вся необходимая информация
    • Описание и фотографии некоторых электронных ламп
    • Коллекция радиоламп
    • AOpen AX4B-533 Tube — Материнская плата на чипсете Intel 845 Sk478 с ламповым усилителем звука
    • AOpen AX4GE Tube-G — Материнская плата на чипсете Intel 845GE Sk478 с ламповым усилителем звука
    • AOpen VIA VT8188A — Материнская плата на чипсете VIA K8T400M Sk754 С 6-канальным ламповым усилителем звука.
    • Hanwas X-Tube USB Dongle — USB звуковая карта для ноутбуков с поддержкой DTS, имитирующая внешним видом электронную лампу.

    Электронная лампа диод, электронная лампа сканворд 5 букв

    Af-writer.ru

    Первая советская радиолампа. Экспозиция Музея нижегородской радиолаборатории

    В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.

    Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия .

    В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники. [источник не указан 2150 дней ]

    В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод ). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор .
    В 1921 году А. А. Чернышёвым [3] [4] предложена конструкция цилиндрического подогревного катода (катода косвенного накала).

    Миниатюрные стержневые пентоды производства СССР

    Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.

    Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.

    Конструкция

    Элементы электронной лампы (пентода):
    Нить накала, катод, три сетки, анод. Вверху — элементы крепления и кольцо с поглотителем остатков воздуха.

    Катод

    Для того, чтобы обеспечить эмиссию электронов с катода, его дополнительно подогревают [3] .

    По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

    Катод прямого накала представляет собой металлическую нить из металла с высоким удельным электрическим сопротивлением. Ток накала проходит непосредственно через катод. Лампы прямого накала потребляют меньшую мощность, быстрее разогреваются, отсутствует проблема обеспечения электрической изоляции между катодом и нитью накала (эта проблема существенна в высоковольтных кенотронах ). Однако, обычно они имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы. Лампы прямого накала часто называют «батарейными», так как они широко применялись в аппаратуре с автономным питанием; но прямонакальный катод применяется и в мощных генераторных лампах. Там он представляет собой не нить, а достаточно толстый стержень.

    Катод косвенного накала представляет собой цилиндр, внутри которого располагают подогреватель (нить накала ), электрически изолированную от катода. Подогреватель приходится раскалять гораздо сильнее, чем прямонакальный катод, поэтому он потребляет намного бо?льшую мощность, лампа выделяет много тепла, требует заметного времени для прогрева (десятки секунд, а то и минуты). Зато площадь катода можно сделать намного больше (а значит, увеличить ток, протекающий через лампу), катод изолирован от источника питания подогревателя (это снимает некоторые схемотехнические ограничения, присущие лампам прямого накала) и питать подогреватель в большинстве случаев можно переменным током (сравнительно массивный катод хорошо сглаживает колебания температуры, и фон переменного тока невелик). Подавляющее большинство ламп малой и средней мощности для стационарной аппаратуры имеют катод косвенного накала.

    Чтобы облегчить эмиссию электронов, катоды ламп обычно активируют — покрывают тончайшим слоем вещества, имеющего относительно малую работу выхода. торий. барий и их соединения [5]. Активирующий слой в процессе работы постепенно разрушается и лампа теряет эмиссию, «садится» — с поверхности катода истекает все меньше электронов, уменьшается ток лампы, то есть снижается ее усиление и выходная мощность. Срок службы «севшей» лампы можно продлить, немного увеличив напряжение накала; но тут увеличивается риск перегорания подогревателя.

    Чисто металлические катоды (например, в мощных лампах с большой плотностью тока катода) делают из вольфрама .

    Анод

    Анод электронной лампы

    Положительный электрод. Выполняется иногда в форме пластины, но чаще в форме коробочки окружающей катод и сетки и имеющей форму цилиндра или параллелепипеда. В мощных лампах анод может иметь рёбра или «крылышки» для отвода тепла. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

    Сетка

    Между катодом и анодом располагаются сетки. которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

    Сетка представляет собой решётку либо (чаще) спираль из тонкой проволоки, навитую вокруг катода на нескольких поддерживающих стойках (траверсах). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

    По назначению сетки подразделяются на следующие виды:

    • Управляющая сетка  — небольшое изменение разности потенциалов между управляющей сеткой и катодом приводит к большим изменениям анодного тока лампы, что позволяет усиливать сигнал. Располагается на минимально возможном расстоянии от катода.
    • Экранирующая сетка  — устраняет паразитную ёмкость между управляющей сеткой и анодом, что позволяет увеличить коэффициент усиления и предотвратить самовозбуждение на высоких частотах. На экранирующую сетку подаётся постоянное напряжение, равное или несколько меньшее анодного. При случайном размыкании цепи анода через экранирующую сетку может потечь ток значительной силы, что приведёт к повреждению лампы. Для предотвращения этого явления, последовательно с экранирующей сеткой включают резистор сопротивлением в несколько килоом;
    • Антидинатронная сетка  — устраняет динатронный эффект. возникающий при ускорении электронов полем экранирующей сетки. Противодинатронную сетку соединяют с катодом лампы, иногда такое соединение сделано внутри баллона лампы.

    В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода [6] [7] .

    Баллон

    Блестящее напыление (геттер ), которое можно видеть на стекле большинства электронных ламп, выполняет двойную функцию — адсорбент остаточных газов, а также индикатор вакуума (многие виды геттера белеют при попадании воздуха в лампу в случае нарушения её герметичности).

    Металлические электроды (токовводы ), проходящие через стеклянный корпус лампы, должны быть согласованы по коэффициенту теплового расширения с данной маркой стекла и хорошо смачиваться расплавленным стеклом. Их выполняют из платины (редко), платинита. молибдена и др. [8]

    Основные типы

    Малогабаритные («пальчиковые») радиолампы

    Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

    Высокочастотная и высоковольтная мощная техника
    • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны. клистроны. лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
    • Магнетрон можно встретить не только в радаре. но и в любой микроволновой печи.
    • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.
    Военная промышленность

    Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы. отличавшиеся малыми размерами и большой механической прочностью.

    Миниатюрная лампа типа «жёлудь» (пентод 6Ж1Ж, СССР, 1955 г.).

    Космическая техника

    Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском. [9]

    Повышенная температура среды и радиация

    Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

    Звукотехническая аппаратура

    Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

    Классификация по названию Маркировки, принятые в СССР/России Маркировки в других странах

    В Европе в 1930-е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки.

    Первая буква характеризует напряжение накала или его ток:

    • А — напряжение накала 4 В;
    • В — ток накала 180 мА;
    • С — ток накала 200 мА;
    • D — напряжение накала до 1,4 В;
    • E — напряжение накала 6,3 В;
    • F — напряжение накала 12,6 В;
    • G — напряжение накала 5 В;
    • H — ток накала 150 мА;
    • К — напряжение накала 2 В;
    • P — ток накала 300 мА;
    • U — ток накала 100 мА;
    • V — ток накала 50 мА;
    • X — ток накала 600 мА.

    Вторая и последующие буквы в обозначении определяют тип ламп:

    • A — диоды;
    • B — двойные диоды (с общим катодом);
    • C — триоды (кроме выходных);
    • D — выходные триоды;
    • E — тетроды (кроме выходных);
    • F — пентоды (кроме выходных);
    • L — выходные пентоды и тетроды;
    • H — гексоды или гептоды (гексодного типа);
    • K — октоды или гептоды (октодного типа);
    • M — электронно-световые индикаторы настройки;
    • P — усилительные лампы со вторичной эмиссией;
    • Y — однополупериодные кенотроны (простые);
    • Z — двухполупериодные кенотроны.

    Двузначное или трёхзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

    • 1-9 — стеклянные лампы с ламельным цоколем («красная серия»);
    • 1х — лампы с восьмиштырьковым цоколем («11-серия»);
    • 3х — лампы в стеклянном баллоне с октальным цоколем;
    • 5х — лампы с октальным цоколем;
    • 6х и 7х — стеклянные сверхминиатюрные лампы;
    • 8х и от 180 до 189 — стеклянные миниатюрные с девятиштырьковой ножкой;
    • 9х — стеклянные миниатюрные с семиштырьковой ножкой.
    Газоразрядные лампы

    В газоразрядных лампах обычно используется разряд в инертных газах при низких давлениях. Примеры газоразрядных электронных ламп:

    • Газоразрядные стабилитроны
    • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т. п.)
    • Тиратроны (трёхэлектродные лампы — газоразрядные триоды, четырёхэлектродные — газоразрядные тетроды)
    • Крайтроны
    • Счётчики Гейгера — Мюллера
    • Ксеноновые. неоновые лампы и другие газоразрядные источники света.
    См. также Примечания
    1. Вакуумная микро- и наноэлектроника
    2. Вакуумная интегральная микросхема
    3. ^ 12Батушев В. А. Электронные приборы: Учебник для вузов. — 2-е, перераб. и доп. — М. Высшая школа, 1980. — С. 302-303. — 383 с.
    4. А. А. Чернышёв Биография на сайте Великие ученые XX века
    5. ^
  • ^ С. Матлин. Портативный передатчик.//«Радио» № 1, 1967, с. 18-20
  • ^ Г. Джунковский, Я. Лаповок. Передатчик третьей категории.//«Радио» № 10, 1967, с. 17-20
  • ^Коленко Е. А. Технология лабораторного эксперимента: Справочник. — СПб. Политехника, 1994. — С. 376. — 751 с. — ISBN 5-7325-0025-1 .
  • Е-2 УХОДИТ К ЛУНЕ
  • Ссылки
    • Справочник по отечественным и зарубежным радиолампам. Более 14000 радиоламп
    • Справочники по радиолампам и вся необходимая информация
    • Описание и фотографии некоторых электронных ламп
    • Коллекция радиоламп
    • AOpen AX4B-533 Tube — Материнская плата на чипсете Intel 845 Sk478 с ламповым усилителем звука
    • AOpen AX4GE Tube-G — Материнская плата на чипсете Intel 845GE Sk478 с ламповым усилителем звука
    • AOpen VIA VT8188A — Материнская плата на чипсете VIA K8T400M Sk754 С 6-канальным ламповым усилителем звука.
    • Hanwas X-Tube USB Dongle — USB звуковая карта для ноутбуков с поддержкой DTS, имитирующая внешним видом электронную лампу.

    Устройство электронной лампы

    john 15 января, 2013 - 21:01

    Любая электронная лампа, или, короче, радиолампа, представляет собой стальной, стеклянный или керамический баллон, внутри которого на металлических стойках укреплены электроды. Воздух из баллона лампы откачивают через небольшой отросток в нижней или верхней части баллона. Сильное разрежение воздуха внутри баллона - вакуум - непременное условие для работы радиолампы. В каждой радиолампе обязательно есть катод - отрицательный электрод, являющийся источником электронов в лампе, и анод - положительный электрод. Катодом может быть вольфрамовый волосок, подобный нити накала электролампочки, или металлический цилиндрик, подогреваемый нитью накала, а анодом - металлическая пластинка, а чаще коробочка, имеющая форму цилиндра или параллелепипеда. Вольфрамовую нить, выполняющую роль катода, называют также нитью накала. На схемах баллон лампы условно обозначают в виде окружности, катод - дужкой, вписанной в окружность, анод - короткой чертой, расположенной над катодом, а их выводы - линиями, выходящими за пределы окружности. Радиолампы, содержащие только катод и анод, называют двухэлектронными, или диодами. На (рис. 1) показано внутреннее устройство двух диодов разных конструкций лампа, изображенная справа, отличается тем, что ее катод (нить накала) напоминает перевернутую латинскую букву V, а анод имеет форму сплюснутого цилиндра. Электроды закреплены на проволочных стойках, впаянных в утолщенное донышко баллона. Стойки являются одновременно выводами электродов. Через специальную колодку с гнездами - ламповую панельку - электроды соединяют с другими деталями радиотехнического устройства.

    Рис. 1. Устройство и изображение двухэлектродной лампы на схемах.

    В большинстве радиоламп между катодом и анодом имеются спирали из тонкой проволоки, называемые сетками. Они окружают катод и, не соприкасаясь, располагаются на разных расстояниях от него. В зависимости от назначения ламп число сеток в ней может быть от одной до пяти. По общему числу электродов, включая катод и анод, различают лампы трех -, четырех -, пятиэлектроднные и т.д. Соответственно их называют триодами (с одной сеткой), тетродами (с двумя сетками), пентодами (с тремя сетками). Внутреннее устройство одной из таких ламп - триода - показано на (рис. 2). Эта лампа отличается от диодов наличием в ней спирали - сетки. На схемах сетки обозначают штриховыми линиями, расположенными между катодом и анодом. Триоды, тетроды и пентоды - универсальные радиолампы. Их применяют для усиления переменных и постоянных токов и напряжений, в качестве детекторов, для генерирования электрических колебаний разных частот и многих других целей. Принцип работы радиолампы основан на направленном движении в ней электронов. «Поставщиком» же электронов внутри лампы является катод, нагретый до температуры 800 - 2000°С. В чем сущность этого явления? Если кастрюлю, наполненную водой, поставить на огонь, то по мере нагревания частицы воды начнут двигаться все быстрее и быстрее. Наконец, вода закипит. При этом частицы воды будут двигаться с настолько большими скоростями, что некоторые из них оторвутся от поверхности воды и покинут ее - вода начнет испаряться. Нечто подобное наблюдается и в электронной лампе. Свободные электроны, содержащиеся в раскаленном металле катода, движутся с огромными скоростями.

    Рис. 2. Устройство и изображение триода на схемах.

    При этом некоторые из них покидают катод, образуя вокруг него электронное «облако». Это явление испускания, или излучения, катодом электронов называют термоэлектронной эмиссией. Чем сильнее раскален катод, тем больше электронов он испускает, тем гуще электронное облако. Когда говорят, что «лампа потеряла эмиссию», это значит, что с поверхности ее катода свободные электроны по какой - то причине вылетают в очень малом количестве. Лампа с потерянной эмиссией работать не будет. Однако чтобы электроны могли вырываться из катода, надо не только нагреть его, но и освободить окружающее пространство от воздуха. Если этого не сделать, вылетающие электроны потеряют скорость, «завязнут» в молекулах воздуха. Поэтому - то в электронной лампе и создают вакуум. Откачивать воздух необходимо еще и потому, что при высокой температуре катод поглощает кислород воздуха, окисляется и быстро разрушается. К этому нужно добавить, что на поверхность катода наносят слой окислов бария, стронция и кальция, обладающий способностью излучать электроны при сравнительно низкой температуре нагрева.

    Устройство электронной лампы

    Темы всевозможных опытов и открытий, мы конечно еще коснемся в следующих уроках, а сейчас хотелось бы сразу остановить Ваше внимание на технике электробезопасности (ТБ), так как мы будем иметь дело с электрическим током, а это небезопасно для Вашего здоровья. Это конечно не самый интересный раздел, но здоровье все же превыше всего. Так же в этом разделе уроков я расскажу, какие инструменты, приборы и материалы нам понадобятся для успешного освоения радиоэлектроники и непосредственно практической стороны наших занятий. Итак, начнем.

    Как работает диод?

    Самой простой радиолампой - диодом - может стать любая лампа накаливания, если внутрь ее баллона впаять металлическую пластинку с выводом наружу (рис. 3) и удалить из баллона воздух. Чтобы разогреть ее нить накала, подключим к ее выводам батарею накала GBH - Образуется цепь накала. Вторую батарею, но с более высоким напряжением, соединим отрицательным полюсом с одним из выводов нити накала, а положительным полюсом - с анодом. Образуется вторая цепь - анодная, состоящая из участка катод - анод, анодной батареи GBa и соединительных проводников. Если включить в нее миллиамперметр, стрелка прибора укажет на наличие тока в этой цепи. У вас, естественно, может возникнуть вопрос: почему в анодной цепи течет ток? Ведь между катодом и анодом нет электрического соединения. Отвечаю: подключив анодную батарею, мы тем самым создали на аноде положительный заряд, а на катоде - отрицательный. Между ними возникло электрическое поле, под действием которого электроны, испускаемые катодом, устремляются к положительно заряженному аноду. А катод покидают другие электроны, которые также летят к аноду. Достигнув анода, электроны движутся по соединительным проводникам к положительному полюсу анодной батареи, а избыточные электроны с отрицательного полюса батареи текут к катоду. Образование в анодной цепи диода потока электронов можно сравнить с таким явлением. Если над кипящей водой поместить крышку кастрюли или тарелку, то образовавшийся пар будет на ней охлаждаться и «сгущаться» в капельки воды. С помощью воронки мы можем эту воду вернуть в кастрюлю. Получается как бы замкнутая цепь, по которой движутся частицы воды. Ток анодной цепи называют анодным током, а напряжение между анодом и катодом лампы - анодным напряжением.

    Рис. 3. Если в лампу накаливания ввести анод и удалить из балона воздух, она превратится в простейшую электронную лампу - диод.

    Наряду с термином «анодное напряжение» применяют также термины «напряжение на аноде», «напряжение анода». Все эти термины равнозначны: они подразумевают напряжение, действующее между анодом и катодом. Если полюсы анодной батареи или иного источника тока присоединены непосредственно к катоду или аноду лампы, то анодное напряжение будет равно напряжению источника тока. А теперь подумайте и ответьте: будет ли в анодной цепи диода протекать ток, если положительный полюс анодной батареи соединить с нитью накала, а отрицательный - с анодом? Конечно, нет. Ведь анод в этом случае имеет отрицательный заряд. Он будет отталкивать электроны, испускаемые катодом, и никакого тока в этой цепи не будет. Итак, двухэлектродная электронная лампа, как и полупроводниковый диод, обладает свойством односторонней проводимости тока. Но она в отличие от полуповодникового диода пропускает через себя только прямой ток, т.е. ток только в одном направлении - от катода к аноду. В обратном направлении, т.е. от анода к катоду, ток идти не может. В этом отношении радиолампа, бесспорно, превосходит полупроводниковый диод, через который течет небольшой обратный ток. Что влияет на значение анодного тока диода? Если катод имеет постоянный накал и излучает беспрерывно одно и то же количество электронов, то анодный ток зависит только от анодного напряжения. При небольшом анодном напряжении анода достигнут лишь те электроны, которые в момент вылета из катода обладают наиболее высокими скоростями. Другие, менее «быстрые» электроны останутся возле катода. Чем выше анодное напряжение, тем больше электронов притянет к себе анод, тем значительнее будет анодный ток. Однако не следует думать, что повышением анодного напряжения можно бесконечно увеличивать анодный ток. При некотором достаточно высоком анодном напряжении все электроны, излучаемые катодом, будут попадать на анод и при дальнейшем увеличении напряжения на аноде анодный ток перестает расти. Это явление называют насыщением анода. Увеличить эмиссию катода можно повышением напряжения накала. Но при этом продолжительность жизни лампы резко уменьшается, а при чрезмерно большом напряжении накала катод быстро теряет эмиссию или совсем разрушается. А что происходит в анодной цепи анода, когда в ней действует переменное напряжение? Обратимся к (рис. 4). Здесь, как и в предыдущем примере, катод диода накаляется током батареи GBH. На анод лампы подается перменное напряжение, источником которого служит вторичная (II) обмотка сетевого трансформатора Т. В этом случае напряжение на аноде периодически изменяется по значению и знаку (рис. 4, а).

    Рис. 4. Диод выпрямляет переменный ток.

    А так как диод обладает односторонней электропроводностью, ток через него идет только при положительном напряжении на его аноде. Говоря иными словами, диод пропускает положительные полуволны (рис. 4,6) и не пропускает отрицательных полуволн перменного тока. В результате в анодной цепи течет ток одного направления, но пульсирующий с частотой перменного напряжения на аноде. Происходит выпрямление переменного тока - явление, знакомое вам по работе полупроводникового диода. Если в анодную цепь включить нагрузочный резистор Rн, через него также будет течь выпрямленный диодом ток. При этом на выводе резистора, соединенном с катодом, будет плюс, а на другом выводе - минус выпрямленного напряжения. Это напряжение, создающееся на резисторе, может быть сглажено фильтром выпрямителя и подано в другую цепь, для питания которой необходим постоянный ток. Лампы, предназначаемые для работы в выпрямителях, называют кенотронами. Двухэлектродные лампы можно использовать не только для выпрямления переменного тока, но и для детектирования модулирования колебаний РЧ.

    Триод и его свойства

    А теперь воспользуемся нашим самодельным диодом и поместим между его катодом и анодом сетку примерно в том виде, какой она была в первых конструкциях радиоламп (рис. 5). Получится триод. Присоединим к его электродам накальную и анодную батареи. В анодную цепь включим миллиамперметр, чтобы следить за всеми изменениями тока в этой цепи. Сетку временно соединим проводником с катодом (рис. 5, а). В этом случае сетка, имея нулевое напряжение относительно катода, почти не оказывает влияния на анодный ток; анодный ток будет таким же, как в опыте с диодом. Удалим проводник, замыкающий сетку на катод, и включим между ними батарею с небольшим напряжением, но так, чтобы ее отрицательный полюс был соеденен с катодом, а положительный - с сеткой (рис. 5,6).

    Рис. 5. Действие трехэлектродной лампы.

    Эту батарею назовем сеточной и обозначим GBc. Теперь сетка находится под положительным напряжением относительно катода. Она стала как бы вторым анодом. Образовалась новая цепь - сеточная, состоящая из участка сетка - катод, батареи GBc и соединительного провода. Имея положительный заряд, сетка притягивает к - себе электроны. Но набравшие скорость электроны будут перехвачены силой притяжения более высокого, чем на сетке, анодного напряжения. В результате анодный ток станет больше, чем тогда, когда сетка была соединена с катодом. Такой же прирост анодного тока можно было бы получить за счет повышения анодного напряжения, но для этого пришлось бы в анодную батарею добавить в несколько раз больше элементов, чем имеет сеточная батарея. Если добавить к сеточной батарее еще два - три элемента и тем самым увеличить напряжение на сетке, анодный ток еще больше возрастет. Значит, положительное напряжение на сетке помогает аноду притягивать электроны, способствует росту анодного тока. При этом некоторая часть электронов оседает и на сетке. Но они сразу же «стекают» через сеточную батарею на катод. Появляется небольшой сеточный ток - ток сетки. С повышением положительного напряжения на сетке увеличивается анодный ток лампы, но одновременно растет и ток сетки. Может случиться, что при некотором довольно большом напряжении на сетке ток в ее цепи станет больше анодного. Это объясняется тем, что сетка, находясь ближе к катоду, притягивает к себе электроны сильнее, чем удаленный анод. В этом случае вылетевшие из катода электроны так разделятся между сеткой и анодом, что большая часть их придется на долю сетки. Такое явление крайне нежелательно для работы лампы - она может испортиться из - за перегрева сетки. Теперь поменяем местами полюсы сеточной батареи, чтобы на сетке относительно катода было отрицательнре напряжение (рис. 5, в). Посмотрим на стрелку миллиамперметра. Она покажет значительно меньший анодный ток, чем в предыдущем эксперименте. Почему анодный ток резко уменьшился? На пути электронов оказался отрицательно заряженный электрод, который препятствует движению их к аноду, отталкивает электроны обратно к катоду. Часть электронов, обладающих наибольшими скоростями, все же «проскочит» через отверстия в сетке и достигнет анода, но количество их будет во много раз меньше, чем при положительном напряжении на сетке. Этим и объясняется резкое уменьшение анодного тока. По мере увеличения отрицательного заряда на сетке ее отталкивающее действие на электроны будет возрастать, а анодный ток - уменьшаться. А при некотором достаточно большом отрицательном напряжении на сетке она не пропустит к аноду ни одного электрона - анодный ток вообще исчезнет (рис. 5, г). Следовательно, отрицательное напряжение на сетке «закрывает» лампу. Изменение напряжения на сетке оказывает в несколько раз более сильное влияние на анодный ток, чем такое же изменение напряжения на аноде лампы. Сетка управляет потоком электронов, летящих от катода к аноду лампы. Поэтому ее называют управляющей. Это свойство триода и используется для усиления электрических колебаний.

    Устройство триода с подогревным катодом

    До сих пор я говорил о радиолампе, в которой функцию катода выполняла нить накала. Такие электронные лампы называют лампами с катодом прямого накала, или батарейными, и предназначаются они для радиоконструкций с питанием от батарей гальванических элементов или аккумуляторов. Катод батарейной лампы - это очень тонкая вольфрамовая проволока, подобная волоску. Она раскаляется сразу же после включения тока и мгновенно охлаждается при выключении его. Если такой катод питать перменным током, то он в такт с изменениями тока будет накаляться то сильнее (при наибольших значения тока), то слабее (при наименьших значениях тока). В результате эмиссия, а значит, и анодный ток лампы будут изменяться с удвоенной частотой переменного тока. Вследствие этого в телефоне или динамической головке громкоговорителя, подключенной к усилителю, будет слышен сильный гул низкого тока, называемый фоном переменного тока. Поэтому нити накала батарейных ламп нельзя питать переменным током. В любительской радиоаппаратуре батарейные лампы сейчас не применяются. Их вытеснили сетевые радиолампы. В радиолампе, предназначенной для аппаратуры с питанием от сети переменного тока, электроны излучает не нить накала, а подогреваемый ею металлический цилиндр (рис. 6).

    Рис. 6. Устройство и схемотехническое изображение триода с подогревным катодом.

    На поверхность такого катода нанесен активный слой, способствующий более интенсивному излучению электронов. Покрытая слоем теплостойкой изоляции нить накала находится внутри цилиндра и питается переменным током. Раскаляясь, она разогревает цилиндр, который и испускает электроны. Нить накала такой лампы является как бы электрической печкой, подогревающей катод. Ее называют подогревателем, а лампы с катодом такого устройства - лампами с подогревными катодами, или лампами с катодами косвенного накала. Почему так сложно устроен катод сетевой лампы? Цилиндр - катод обладает относительно большой массой, поэтому его температура при изменениях тока в подогревателе не изменяется. В результате эмиссия получается равномерной и при работе лампы в усилителе фон переменного тока не слышен. Нить накала сетевой лампы обозначают на схемах так же, как и в батарейной лампе, а катод - дужкой над нитью накала. Катод имеет отдельный вывод. Нити накала большей части сетевых ламп рассчитаны на напряжение 6,3 В при токе 0,15 - 2 А. Оно подается от трансформаторов. Потребляемые подогревателями мощности тока во много раз больше, чем мощности, расходуемые на питание катодов батарейных ламп. Сетевые лампы начинают работать не сразу после включения тока, а только через 25 - 30 с - после того, как прогреется катод. Надо сказать, что в некоторых усилителях, питаемых от сети переменного тока, иногда все же используют лампы с катодами прямого накала. Но катоды таких ламп делают более массивными, вследствие чего при периодических изменениях накаливающего тока их температура и электронная эмиссия изменяются мало. Если вам придется столкнуться с аппаратурой на электронных лампах, то придется иметь дело только с лампами косвенного накала.

    Триод в качестве усилителя

    Для электронной лампы, выполняющей роль усилителя, как и для транзистора, важнейшим условием для работы без искажения сигнала является смещение. Для этого на управляющую сетку (относительно катода) вместе с напряжением усиливаемого сигнала подают некоторое постоянное отрицательное напряжение, которое несколько закрывает лампу. Напряжение смещения предупреждает появление сеточных токов, что может вызвать искажение сигнала, и влияет на режим работы лампы в целом. Напряжение смещения для биполярных транзисторов одинаково и равно: для германиевых 0,1 - 0,2 В, для кремниевых - 0,5 - 0,7 В. Для электронных же ламп оно определяется свойствами каждой конкретной лампы и указывается в паспортах ламп и справочных таблицах. Так, например, для триода 6С5С при постоянном напряжении на аноде 250 В на ее управляющую сетку должно подаваться напряжение смещения, равное минус 8 В. В принципе смещение на управляющую сетку можно подавать от специальной батареи с соответствующим напряжением, как это иногда делали в батарейных ламповых приемниках. В сетевой же аппаратуре применяют так называемое автоматическое смещение, не требующее специальной батареи. Схему усилителя с таким способом смешения вы видите на (рис. 7).

    Рис. 7. Триод - усилитель и графики, иллюстрирующие его работу.

    В усилителе работает триод с катодом косвенного накала. Нить накала лампы питается от обмотки трансформатора, понижающего напряжение сети до 6,3 В. Между минусом источника питания анодной цепи Uи.п. функцию которого выполняет выпрямитель, и катодом лампы включен резистор Rк. Управляющая сетка лампы соединена через резистор Rc с нижним выводом катодного резистора Rк. Через резистор Rк течет катодный ток лампы, и на нем происходит падение напряжения, соответствующее току и сопротивлению в этом участке цепи. При этом на верхнем выводе резистора Rк, а значит, и на катоде лампы получается положительное напряжение относительно его вывода, соединенного с минусом источника анодного напряжения. А так как сетка соединена не с катодом, а с выводом резистора Rк, противоположном катоду, она получает отрицательное напряжение относительно катода. Резистор, с помощью которого на сетке лампы создают начальное отрицательное напряжение смещения, называют резистором автоматического смещения. Сопротивление резистора Rк, необходимое для получения требуемого напряжения смешения Uc для конкретной лампы можно рассчитать по формуле Rк= Uc/Iк, где Iк - катодный ток лампы, равный току анода (или сумме токов цепей многоэлектронной лампы). Приведу пример расчета. На управляющую сетку триода 6С5С надо подать напряжение смещения Uc = 8В. Анодный ток этой лампы составляет 8 мА. В этом случае сопротивление резистора смещения должно быть: Rк = 8 / 0,008 = 1 кОм. Заодно давай подсчитаем мощность тока, рассеиваемую на этом резисторе: Р = UI = 8 В • 0,008 А х 0,06 Вт. Значит, этот резистор должен быть рассчитан, на мощность рассеивания не менее 0,1 Вт (МЛТ-0,125). Иначе он может сгореть. Чтобы измерить напряжение автоматического смещения, вольтметр присоединяют параллельно катодному резистору таким образом, чтобы его зажим, отмеченный знак « + », был подключен к катоду лампы. Если при этом вольтметр показывает 8 в, значит, на сетке лампы напряжение минус 8 в. Так, между прочим, подают напряжение смещения и на затвор полевого транзистора. Какова роль конденсатора Ск? Он решает ту же задачу, что и аналогичный ему конденсатор, шунтирующий эмиттерный резистор транзисторного усилителя. Когда лампа усиливает переменное напряжение сигнала, во всей ее анодной цепи появляется переменная составляющая усиливаемых колебаний. В результате на катодном резисторе, как и на анодной нагрузке возникает переменное напряжение. И если в цепи катода будет только резистор, то создающееся на нем переменное напряжение вместе с постоянным напряжением смещения будет автоматически подаваться на управляющую сетку лампы. Образуется отрицательная обратная связь, ослабляющая усиление. Конденсатор же, шунтирующий резистор автоматического смещения, свободно пропускает через себя переменную составляющую анодного тока и тем самым устраняет отрицательную обратную связь. В этом случае через катодный резистор идет только постоянная составляющая анодного тока, благодаря чему на управляющей сетке действует только постоянное начальное отрицательное напряжение смещения. Емкость конденсатора Ск должна быть достаточно большой, чтобы он не представлял сколько - нибудь существенного сопротивления токам самых низших частот, усиливаемых лампой. В усилителе ЗЧ, например, его емкость должна быть не менее 10 мкФ, а номинальное напряжение - не менее напряжения смещения. Это, как правило, электролитический конденсатор. Работу триода как усилителя можно иллюстрировать графиками, показанными на том же( рис. 7). Здесь к участку сетка - катод лампы, т.е. в цепь управляющей сетки через конденсатор связи Ссв подается переменное напряжение UВх которое надо усилить. Источником этого напряжения может быть детекторный приемник, микрофон, звукосниматель. В анодную цепь лампы включена анодная нагрузка - резистор Ra. Пока в цепи сетки нет переменного напряжения (участок 0 а на графиках), в анодной цепи течет не изменяющийся по величине ток Iа, соответствующий нулевому напряжению на сетке. Это среднее значение анодного тока - ток покоя. Но вот в цепи сетки начало действовать входное переменное напряжение (на графиках - участки а, б). Теперь сетка периодически заряжается то положительно, то отрицательно, а анодный ток начинает колебаться: при положительном напряжении на сетке он возрастает, при отрицательном - уменьшается. Чем больше изменяется напряжение на сетке, тем значительнее амплитуда колебаний анодного тока. При этом на выводах анодной нагрузки Ra появляется переменная составляющая напряжения, которая может быть подана в цепь сетки такой же лампы следующего каскада для дополнительного усиления. Если в цепь сетки подавать напряжение звуковой частоты, скажем, от детекторного приемника, а в анодную цепь вместо резистора Ra включить головные телефоны, то усиленное лампой напряжение заставит телефоны звучать во много раз громче, чем при подключении к детекторному приемнику. Какое усиление может дать лампа? Это зависит от ее конструкции, в частности от густоты и расположения сетки относительно катода. Чем сетка гуще и ближе расположена к катоду, тем сильнее сказывается влияние ее напряжения на электронный поток внутри лампы, тем значительнее колебания анодного тока, тем, следовательно, лампа дает большее усиление. Выпускаемые нашей промышленностью триоды в зависимости от их назначения обладают различными усилительными свойствами. Одни из них могут дать двадцати - тридцатикратное усиление, другие позволят усиливать напряжение в несколько сотен и даже тысяч раз. Пока я рассказывал о триоде, вы, вероятно, невольно сравнивали его с биполярным транзистором. В самом деле, катод лампы напоминает эмиттер, анод - коллектор, а управляющая сетка - базу транзистора. По своим функциям эти электроды очень схожи, но как вы в этом убедились, физические процессы, происходящие в трехэлектродной лампе и транзисторе, никак нельзя назвать одинаковыми. Да, в твердом теле биполярного транзистора работают отрицательные и положительные носители тока, а в вакууме электронной лампы только отрицательные - электроны. Иное дело - полевой транзистор, в канале которого ток образуется только положительными зарядами (в канале типа р) или только отрицательными зарядами (в канале типа n). Полевой транзистор по своим свойствам близок к электронной лампе. Поэтому по функциональным обязанностям катод лампы можно сравнить с истоком, анод - со стоком, а сетку - с затвором полевого транзистора.

    Многоэлектродные лампы

    Однако триод имеет недостатки, ограничивающие его применение. Дело в том, что его управляющая сетка и анод являются обкладками своеобразного конденсатора, емкость которого может составлять 5 - 10 пФ. Для колебаний звуковой частоты эта емкость почти не сказывается, но при усилении колебаний радиочастоты, особенно сигналов радиостанций KB и УКВ диапазонов, через нее некоторая часть высокочастотной энергии из анодной цепи попадает в цепь сетки. Образуется паразитная обратная связь, нарушающая нормальную работу усилителя: он самовозбуждается, т.е. становится генератором колебаний высокой частоты. Для борьбы с этим явлением в лампу ввели еще одну сетку, расположив ее между управляющей сеткой и анодом. Лампа стала четырехэлектродной - тетродом (рис. 8, а). Вторая сетка стала выполнять роль экрана, уменьшающего емкость между управляющей сеткой и анодом. Поэтому ее назвали экранирующей. На нее, как и на анод, подают постоянное положительное напряжение, но обычно меньше, чем на анод. Экранирующая сетка не только уменьшила паразитную емкость между анодом и управляющей сеткой, но и улучшила усилительные свойства лампы. Имея положительное напряжение относительно катода, она, ускоряя полет электронов внутри лампы, увеличила анодный ток. Некоторая часть электронов попадает и на экранирующую сетку, и в ее цепи появляется ток - ток экранирующей сетки. Но он мал по сравнению с анодным током.

    Рис. 8. Тетрод (а), пентод (б) и лучевой тетрод (в).

    Тетроды позволили повысить качество аппаратуры при использовании меньшего числа радиоламп. Однако наряду с достоинствами, у тетродов более ярко, чем у триодов, стал проявляться другой весьма существенный недостаток - динатронный эффект. Прежде чем разобраться в этом неприятном для работы лампы явлении, проведите такой опыт. В блюдце, наполненное водой, пустите с высоты каплю воды. Что получится. Ударившись о поверхность воды, капля выбъет из нее одну - две капли. Чем с большей высоты будете пускать каплю, тем больше будет ее энергия полета, тем больше капель выбьет она из воды, находящейся в блюдце. Нечто подобное происходит в лампе - тетроде. В ней скорость полета электронов огромна. Они как бы бомбардируют анод. При этом каждый электрон способен выбить из анода по два - три и больше электронов. Эти вторичные электроны устремляются к экранирующей сетке, и внутри лампы создается встречный поток электронов, нарушающий процесс усиления. Для борьбы с этим явлением между анодом и экранирующей сеткой ввели третью сетку. Лампа стала пятиэлектродной - пентодом (рис. 8, б). Эту сетку, названную защитной (или противодинатронной), соединяют с катодом внутри лампы, или это соединение делают на ламповой панельке. Защитная сетка, имея потенциал катода, т. е. отрицательный относительно анода, возвращает вторичные электроны к аноду. Что же касается прямого потока электронов, то защитная сетка почти не оказывает ему препятствия. По своим усилительным свойствам пентод лучше триода и тетрода. К числу многоэлектронных ламп относятся и так называемые лучевые тетроды (рис. 8, в). Это тоже пятиэлектродные лампы, но у них витки экранирующей сетки расположены точно против витков управляющей сетки, благодаря чему электроны летят к аноду не сплошным потоком, а лучами. Отсюда и название тетрода - лучевой. При этом на экранирующую сетку попадает значительно меньше электронов, так как ее витки находятся «в тени» витков управляющей сетки. Образованию лучей способствуют соединенные с катодом пластины - экраны, ограничивающие боковой поток электронов. При такой конструкции лампы и точно рассчитанном расстоянии между ее электродами выбитые из анода вторичные электроны, не долетев до экранирующей сетки, притягиваются обратно анодом и не нарушают работы лампы. Лучевые тетроды применяют главным образом в выходных каскадах приемников и усилителей ЗЧ, от которых требуется получать электрические колебания звуковой частоты значительной мощности. Существует много типов других, более сложных электронных ламп, например с четырьмя и пятью сетками, именуемые гексодами и гептодами. Есть комбинированные лампы, объединяющие в одном баллоне две - три лампы. Это диод - триоды, двойные триоды, триод - пентоды и др. Триод - пентод, например, объединяет в одном баллоне триод и пентод. Такая лампа будет использована в усилителе, предназначенном для воспроизведения музыкальных записей. Приходилось ли вам видеть в некоторых старых приемниках светящиеся зеленым цветом «глазки»? Это тоже электронные лампы, облегчающие точную настройку приемника на радиостанцию. Их называют электронно - лучевыми индикаторами - настройки.

    Конструкция, маркировка и цоколевка радиоламп

    Радиолампы предназначаются для работы в самых разнообразных радиотехнических устройствах. В особую группу принято объединять радиолампы, используемые в приемниках, усилителях ЗЧ, телевизорах. Ее называют группой приемно - усилительных ламп. Значительная часть приемно - усилительных радиоламп имеет стеклянные баллоны. Некоторые из них своим видом напоминают пальцы, поэтому такие лампы часто называют пальчиковыми. Металлические баллоны или металлизированные слои, нанесенные на стеклянные баллоны, являются экранами - своеобразными стенками, ограничивающими распространение электрических полей, возникающих внутри ламп, а также защищающими лампы от воздействия на них внешних полей. Они обычно имеют самостоятельные выводы, которые соединяют с заземленным проводником радиоконструкции. Лампе каждого типа присвоено название, состоящее из цифр и букв, расположенных в определенном порядке, например: 6К1П, 6Н8С, 6Ж8, 6ЖЗП, 6И1П. Первая цифра, входящая в наименование лампы, указывает округленное напряжение, на которое рассчитана ее нить накала (напряжение 6,3 В округляют до 6). Второй знак - буква - характеризует назначение лампы. Буквой Д обозначают, например, диоды. Если диод предназначен для выпрямления переменного тока, в обозначении этой лампы стоит буква Ц. Буквой С обозначают триоды, буквами К и Ж-маломощные пентоды, буквой П - мощные пентоды и лучевые тетроды, буквой Е - электронно - лучевые индикаторы настройки. Частотно - преобразовательные лампы обозначают буквой А и И, двойные диоды - буквой X. Триод, объединенный в одном баллоне с одним или двумя диодами, обозначают буквой Г, пентод с одним или двумя диодами - буквой Б, двойные триоды - буквой Н, триод - пентоды - буквой Ф. Следующий, третий знак в наименовании лампы указывает порядковый номер данного типа лампы. Четвертый, последний знак характеризует баллон лампы. Лампы со стеклянными баллонами относительно больших размеров обозначают буквой С, пальчиковые лампы - буквой П, а сверхминиатюрные - буквой. Б или А. Отсутствие в наименовании ламп четвертого знака указывает на то, что эта лампа имеет металлический баллон. Зная условные обозначения, нетрудно расшифровать наименования ламп и их значение. Вот несколько примеров.

    • Лампа 6К3 - сетевая лампа. Ее нить накала рассчитана на напряжение 6,3 (первый знак - цифра 6). Это пентод (второй знак - буква К), модель первая (третий - 1), баллон стеклянный пальчикового типа (четвертый - буква П).
    • Лампа 6Н1П - двойной триод с нитью накала на 6,3 В, первая модель пальчикового типа.
    • Лампа 6Ж8 - пентод со стальным баллоном (отсутствует четвертый знак), нить накала рассчитана на напряжение 6,3 В, восьмая модель.
    • Лампа 6ФЗП - сетевой триод - пентод, третья модель пальчикового типа.
    • Лампа 6П1П - мощный сетевой пентод (лучевой тетрод), пальчиковой серии, модель первая.

    Рис. 9. Цоколевка и панельки радиоламп.

    Таким образом, название лампы дает некоторое представление о том, что она собой представляет и для какой цели пригодна. Многие радиолампы широкого применения имеют так называемый октальный цоколь (рис. 9, а), на котором по окружности расположены контактные штырьки. В зависимости от числа электродов в лампе штырьков может быть от четырех до восьми. В середине цоколя, между штырьками, имеется направляющий «ключ», исключающий ошибочное включение лампы в панель. Панели для таких ламп имеют по восемь гнезд и отверстие для направляющего ключа. Каждому штырьку на цоколе, находящемуся на определенном месте по отношению к «бородке» ключа, и соответствующему этому штырьку гнезду на ламповой панели присвоен строго постоянный номер. Нумерация штырьков и гнезд идет от бородки направляющего ключа по движению часовой стрелки. При этом на цоколь лампы или ламповую панельку надо смотреть снизу. Пальчиковые лампы цоколей не имеют, это бесцокольные лампы (Рис.9, б). У них штырьки - заостренные никелевые проволочки - впаяны в утолщенное дно стеклянного баллона. Независимо от числа электродов пальчиковые лампы имеют по семь или девять штырьков, расположенных по окружности на одинаковом расстоянии один от другого. Только в одном месте между штырьками расстояние вдвое больше, чем между всеми другими, благодаря чему исключается возможность ошибочного включения лампы в панельку. Панельки для пальчиковых ламп имеют соответственно семь или девять гнезд. Нумерация штырьков ламп и гнезд панелек идет от большого участка между ними в направлении движения часовой стрелки. Имеется в виду, что и в этом случае на лампу и ее панельку смотрят снизу. Как узнать, с каким штырьком соединен тот или иной электрод лампы? На принципиальных схемах рядом с выводами электродов ламп обычно ставят цифры, соответствующие номерам их штырьков.